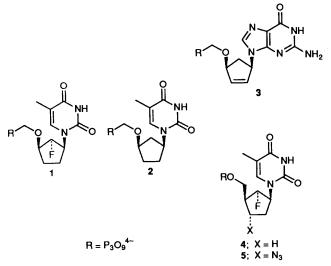
Preparation of Nucleotide Mimics with Potent Inhibitory Activity Against HIV Reverse Transcriptase

Diane M. Coe,^a David C. Orr,^b Stanley M. Roberts^{*,a} and Richard Storer^c

^a Department of Chemistry, Exeter University, Exeter, Devon EX4 4QD, UK

^b Department of Virology, Glaxo Group Research, Greenford, Middlesex UB6 OHE, UK

^c Department of Medicinal Chemistry, Glaxo Group Research, Greenford, Middlesex UB6 OHE, UK


The triphosphate **11** has been synthesised in eight steps from 6-oxabicyclo[3.1.0]hex-2-ene **6** and has been shown to inhibit the enzyme, human immunodeficiency virus reverse transcriptase (HIV-rt).

We have been interested for some time in the synthesis of compounds active against the AIDS virus (HIV).^{1.2} Our strategy has involved the preparation of carbocyclic nucleosides and nucleotides designed to inhibit HIV-reverse transcriptase (HIV-rt) and to be relatively stable *in vivo*.³

Recently we described the synthesis of the carbocyclic nucleotide 1 and reported that the compound displayed potent inhibition of HIV-rt.⁴ The diphosphorylphosphonates 2 and 3 were also prepared from the corresponding phosphonates⁴ and show similar, quite spectacular biological activity (Table 1). It is noteworthy that, in comparison, the carbocyclic nucleoside 5'-triphosphates 4^5 and 5^1 show a relatively low level of reverse transcriptase inhibitory activity.

To further investigate the potential antiviral activity of unusual nucleotide mimics, the carbocyclic compound 11 has been prepared from 6-oxabicyclo[3.1.0]hex-2-ene 6^6 by the route described in Scheme 1. Thus the epoxide 6 was treated with tetrakis(triphenylphosphine)palladium(0) and thymine to give the unsaturated alcohol 7 (24% yield). Hydrogenation of 7 gave *N*-cyclopentylthymine, so the hydroxy group was protected from hydrogenolysis by conversion into the *tert*-butyldimethylsilyl derivative. Reduction of 8 (hydrogen and palladium-on-carbon) followed by treatment with fluoride ion gave the required alcohol 9 (63% from 7). The critical steps involving the conversion of the alcohol 9 into the triphosphate 11 via the monophosphate 10 used methodology that we have previously shown to be well suited to the task.⁷

The compound 11 prepared as a racemate, acted as an inhibitor of reverse transcriptase (Table 1) albeit at a level two orders of magnitude weaker than AZT-triphosphate. It is very

Scheme 1 Reagents and conditions: i, $(Ph_3P)_4Pd$, thymine, DMF, heat; ii, TBDMSCl, imidazole, DMF, room temp.; iii, H_2 , Pd/C, EtOH, room temp.; iv, TBAF, THF, room temp.; v, Di-tert-butyl N,N'-diethylphosphoramidite, 1H-tetrazole, THF, room temp., vi, MCPBA, CH_2Cl_2 , $-40^{\circ}C$; vii, CF_3CO_2H , CH_2Cl_2 , room temp. then NH₃, EtOH, $-2^{\circ}C$; vii, 1,1'-carbonyldiimidazole, DMF, room temp., then $P_2O_7H_4NBu_3$, DMF, room temp.

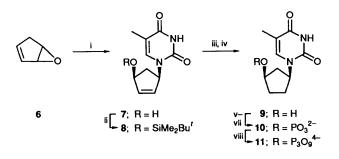


Table 1 Activity of some carbocyclic nucleotides against HIV-rt*

Compound ^a	IC50 Against HIV-rt (µmol)
AZT-triphosphate	0.08
Carbovir-triphosphate	0.05
1	0.43
2	0.11
3	0.06
4	16.5
5	13.9
11	7.9

* AZT triphosphate and the thymidine analogues were assayed using (rA)(dT) as the template primer and $[^{3}H]dTTP$ as substrate. In cases of carbovir triphosphate and compound 3, (rC)(dG) was used as the template primer and $[^{3}H]dGTP$ as substrate.

^a All compounds 1-5, 11 were prepared in racemic form.

rare to find a triphosphate ester derived from a secondary alcohol with an ability to act as an inhibitor of a virally-coded enzyme. The synthesis of such a simple compound with inhibitory activity against HIV-rt should act as a stimulus to further work in this area.

Experimental

1-[(1'β,4'β)-4'-Hydroxycyclopent-2'-enyl]thymine 7.---Tetrakis(triphenylphosphine)palladium(0) (0.097 g, 0.08 mmol) was added to a suspension of thymine (1.120 g, 8.88 mmol) in dry DMSO (10 cm³) under an inert atmosphere in the dark. After being stirred for 2 min at room temp. the reaction mixture was cooled to 0 °C and a solution of 6-oxabicyclo[3.1.0]hex-2ene 6 (0.649 g, 7.91 mmol) in dry THF (8 cm³) was added dropwise over 10 min. The yellow solution was allowed to warm to room temperature over 2 h and then stirred overnight. The solvent was evaporated under reduced pressure and the residue dissolved in dichloromethane (20 cm³), filtered through Celite and evaporated under reduced pressure. The residue was chromatographed using chloroform-ethanol (15:1) to give the title compound 7 (0.0406 g, 1.94 mmol, 24%) as a white crystalline solid, m.p. 196-199 °C (from isopropyl alcohol) (Found: C, 57.55; H, 5.9; N, 13.1. C₁₀H₁₂N₂O₃ requires C, 57.69; H, 5.80; N, 13.45%); λ_{max} (pH 6 phosphate buffer)/nm 272.0 (10 050); ν_{max} (KBr)/cm⁻¹ 3600–3300s br (NH, OH) and 1688s br (C=O, thymine); $\delta_{\rm H}$ (250 MHz; [²H₆]-DMSO) 11.25 (1 H, s, NH), 7.29 (1 H, s, 6-H), 6.13 (1 H, ddd, J⁺ 6, 2, 2, 3'-H), 5.82-5.76 (1 H, m, 2'-H), 5.43-5.33 (1 H, m, 1'-H), 5.23 (1 H, d, J 5, OH), 4.68–4.53 (1 H, m, 4'-H), 2.73 (1 H, ddd, J 14, 7, 7, α5'-H), 1.76 (3 H, s, Ch₃) and 1.36 (1 H, ddd, J 14, 4.5, 4.5, β 5'-H); $\delta_{\rm C}(62.9 \text{ MHz}; [^2H_6]-\text{DMSO})$ 163.70, 150.73 (C-2, C-4), 139.88, 137.10, 130.78 (C-6, C-2', C-3'), 109.24 (C-5), 73.29 (C-4'), 57.75 (C-1'), 40.09 (C-5') and 12.03 [CH₃C(5)].

† J-Values are given in Hz.

Acknowledgements

We thank Glaxo Group Research for a studentship (to D. M. C.).

References

- C. A. Fletcher, H. Hilpert, P. L. Myers, S. M. Roberts and R. Storer, J. Chem. Soc., Chem. Commun., 1989, 1707; R. M. Highcock, H. Hilpert, P. L. Myers, S. M. Roberts and R. Storer, J. Chem. Soc., Perkin Trans. 1, 1991, 1127.
- 2 S. J. C. Taylor, A. G. Sutherland, C. Lee, R. Wisdom, S. Thomas, S. M. Roberts and C. Evans, J. Chem. Soc., Chem. Commun., 1990, 1120.
- 3 S. M. Roberts, Chem. Brit., 1991, 518.
- 4 D. M. Coe, H. Hilpert, S. A. Noble, M. R. Peel, S. M. Roberts and R. Storer, J. Chem. Soc., Chem. Commun., 1991, 312.
- 5 D. M. Coe, P. L. Myers, D. M. Parry, S. M. Roberts and R. Storer, J. Chem. Soc., Chem. Commun., 1990, 151.
- 6 M. Korach, D. R. Nielson and W. H. Rideout, Org. Synth., 1973, 5, 414.
- 7 D. M. Coe, S. L. Flitsch, H. Hilpert, M. Liebster, S. M. Roberts and N. J. Turner, *Chem. Ind.*, 1989, 724.

Paper 1/04849J Received 19th September 1991 Accepted 2nd October 1991